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The logic of using summed radiocarbon (*C) calibrations (cumulative probability density functions for
large numbers of calibrated '#C dates) as proxies for past populations rests on the presumption of a
proportional relationship between population size and the production, and subsequent preservation,
recovery, and analysis, of 1*C-datable material. Critiques of this approach have generally focused on the
various problems that may undermine the validity of this assumption.

Here, instead, we presume a perfect correspondence between population size and the quantity of
datable material produced at any given time, and explore the question of how well summed 'C cali-
brations can track demographic changes under such ideal circumstances. We introduce a method of
generating a random sample of simulated C determinations, from a specified distribution, with variable
data densities and measurement errors. In other words, we generate a random sample of C dates not
from an ideal statistical distribution but rather using a defined population curve to determine the
probability distribution from which the calendar dates of the simulated C samples are drawn. We
generate simulated C ages for these samples, calibrate them, and sum those calibrations. We compare
the resulting proxy population curve to the known population distribution from which it was generated,
to see whether known population fluctuations are unambiguously visible on a proxy curve derived from
14C data sets that are realistic in terms of the number and precision of the C determinations included.

Results highlight 1) the critical role played by the magnitude and duration of any population fluctu-
ation, and 2) the importance of sample size, and the reality that the numbers of samples required to
detect significant population changes are generally far higher than those available to researchers pro-
posing demographic reconstructions on the basis of literature searches for radiocarbon dates. We
conclude that even if archaeological 'C data sets could be corrected for taphonomic filters and research
biases, demographic signals would be difficult to distinguish from statistical noise in summed probability
distributions. We suggest that simulation studies should be integral components of any attempt to
reconstruct prehistoric demography from 'C dates.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

2009; Collard et al., 2010). The “Sum approach” has generally
been driven by: the desirability of population time-series as an

The last decade has seen a stream of publications, in peer-
reviewed English-language archaeological journals, based on the
premise that cumulative probability distributions of calibrated
radiocarbon dates (“Sum distributions) are valid proxies for hu-
man populations (e.g., Gkiasta et al., 2003; Gamble et al., 2005;
Shennan and Edinborough, 2007; Buchanan et al., 2008; Riede,
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explanatory variable in analyses of cultural change (Shennan,
2009); poor chronological resolution of other potential popula-
tion proxies; and especially the relative ease of data-mining for 4C
results, compared to obtaining data on and interpreting more
complex or qualitative variables, such as numbers of structures,
quantities of artifacts, and settlement patterns. Even when a multi-
proxy approach has been adopted, sums of calibrated C dates may
appear to offer the most precise chronology for fluctuations in
population inferred from other evidence.

In individual ™C calibrations, the height of a probability distri-
bution at any calendar date corresponds to the probability that this
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OxCal v4.2.3 Bronk Ramsey (2013); r:5 IntCal13 atmospheric curve (Reimer et al 2013)
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Fig. 1. A normalized Sum distribution (black), obtained in OxCal v4.2.3 (Bronk Ramsey, 2009a) by adding the heights of the calibrated distributions for dates 1—3 at every calendar
date and normalizing the height of the arithmetic sum distribution to 1. A single arbitrary calendar date is marked to illustrate the summation of the three distinct probabilities.

is the true date of the material dated. Individual “C calibrations can
be combined by adding the height of each calibrated distribution at
every calendar date, and normalizing the height of the resulting
cumulative probability density function, which should contain the
dates of all the samples concerned (Fig. 1). Sum distributions can
easily be calculated using the calibration software CalPal (Weninger
etal., 2007), Calib (Stuiver and Reimer, 1986—2014) or OxCal (Bronk
Ramsey, 2009a).

In publications based on the “Sum approach”, the peaks and
troughs in a Sum distribution are regarded as proportional to the
number of *C samples of the corresponding calendar age. In ef-
fect, the Sum distribution is used as a proxy for the frequency
distribution of dates; the real frequency distribution is unknow-
able, as the dates of individual samples are always ambiguous
(Fig. 1).!

For even a real frequency distribution of dates to provide a
good approximation of human population trends, we must as-
sume that a) the dated samples are statistically representative of
an underlying “population” of potential '*C samples, and b) there
is a proportional relationship between past human population
and the production of datable cultural material. Drawing on
analogy with historic events as well as demographic and evolu-
tionary theory, proponents of the Sum approach contend that
population fluctuations are likely to be significant in (depending
on the scale of investigation) the trajectory of a particular region
or the human species, linked (as either cause or consequence) to,
for instance, evolutionary bottlenecks, subsistence innovations,
migrations, etc. As a result, they aim to identify population
fluctuations of sufficient magnitude and duration to influence or
explain important transitions in human history, identifying
important (pre)historic events and enabling correlation with
other exogenous events (e.g., climate changes, volcanic eruptions,
asteroid impacts). Although some authors acknowledge that Sum
distributions are at best imperfect proxies, others may give

T Sum distributions can provide a reasonable approximation of changes in the
temporal frequency of dated samples when a Bayesian model includes a high
enough density of simulated data (Bronk Ramsey, 2001). In Bronk Ramsey's little-
noticed example (2001: Fig. 3), the Sum distribution is the sum of posterior den-
sity estimates of the dates of simulated '*C samples, not of simple calibrations. The
fact that phase boundaries are at exactly the right points (where the frequency of
dates changes) helps to produce a Sum distribution that closely approximates the
original distribution of sample dates, which are evenly spaced within each phase.

readers the impression that the major features of Sum distribu-
tions reflect population fluctuations quite precisely, in terms of
both timing and scale. For example, Collard et al. (2010) and Kelly
et al. (2013) use the slopes of spikes in a Sum distribution to
calculate population growth rates, while Shennan et al. (2013:4)
state that “In virtually all the regions examined here, there are
significant demographic fluctuations and in most there are in-
dications at certain points of population decline of the order of
30—60%".

The presumed link between the height of a Sum curve and the
size of the corresponding human population has been criticized on
methodological and theoretical grounds (e.g., Bayliss et al., 2007;
Culleton, 2008; Chiverrell et al., 2011; Bamforth and Grund,
2012), as other factors than population size may create peaks and
troughs in Sum curves (discussed in detail in Section 2). Never-
theless, Shennan (2013:305) maintains that “[the] key point is that
even though a single date may have a broad calibrated range, the
accumulation of the probability distributions of a large number of
dates produces a high degree of chronological resolution making it
possible to trace population fluctuations in considerable detail”.
The lure of prehistoric population proxies is such that publications
which use the Sum approach continue to appear (Rieth et al., 2011;
Hinz et al., 2012; Armit et al., 2013; Mulrooney, 2013).

To address the question of discerning real fluctuations in the
detail of Sum distributions, we investigate here whether the Sum
approach can identify the kinds of patterns which it aspires to
find, in sets of simulated (artificial) '*C determinations that real-
istically represent the data density (average number of samples
per year) available in archaeological C data sets. Specifically, we
generate random samples of dates from distributions corre-
sponding to specific human population scenarios (i.e., the proba-
bility of drawing a sample from a given date is exactly
proportional to the population size in that year), simulate 4C
determinations for those samples, sum the results, and compare
those sums to the original population curves from which the
simulated batches of dates were generated. The population sce-
narios that we explore are drawn from historical and archaeo-
logical data, and thus are realistic in their magnitudes and
durations. We have selected population events that are notable
not only for their scale, but also for their recognized historical
consequences — i.e., exactly the sorts of events that Sum ap-
proaches hope to identify. It is clear from our results that even in
rich data sets that lack any of the known sources of bias, the Sum
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approach is not reliably effective at distinguishing population
fluctuations of the scale interesting to archaeologists from statis-
tical noise. We review below the requirements for such identifi-
cation, before exploring simulations that assess the effectiveness
of Sum approaches.

2. Logic of sum approaches: necessary assumptions and
potential biasing factors

2.1. Sample production and survival

Any approach whose logic relies on diachronic comparison — in
the case of Sum approaches to past population, of the quantities of
datable material produced at different times — must confront the
issue of taphonomy, the differential production and survival of
potential C samples. “Correction” for destruction over time, using
a simple exponential decay curve (i.e., assuming a constant rate of
site destruction; Surovell and Brantingham, 2007; Peros et al.,
2010), may provide a more realistic impression of the relative
abundance of datable material in different periods, and may not
even be necessary if the period studied is relatively brief compared
to its absolute age. Moreover, comparisons within and between
data sets representing different types of archaeological settings
(e.g., settlements, cemeteries, monuments) have been suggested as
a means of distinguishing between “real” and taphonomic patterns
in the abundance of datable material (e.g., Riede, 2009; Collard
et al,, 2010; Hinz et al., 2012).

At a local level, taphonomy clearly produces spurious patterns;
where bone collagen survives poorly, for example, an otherwise
perfect C proxy might track the popularity of cremation burial,
rather than the overall population. It is assumed, unrealistically in
our view, that in large data sets, taphonomic filters will not
discriminate between regions and site types, and that the quantity
of surviving datable material should therefore reflect underlying
trends in the production of datable material, trends which depend
on the number of people alive to produce such material. More
complex models, which attempt to account for palae-
oenvironmental changes, such as sea-level rise, and for subsequent
land-use, may provide more realistic indications of the survival of
datable material from different periods, but again, there is a sub-
stantial body of literature based on the assumption that (other
things being equal) taphonomic patterns will have a neutral effect
on the resulting Sum distribution, rather than taking a more critical
view (cf. Ballenger and Mabry, 2011, who present a case study in
which other factors overwhelm production as a determinant of the
abundance of datable material). Nevertheless, we presume for the
sake of this study that an ideal case, in which taphonomy either is
not a confounding factor or may be sufficiently accounted for, may
exist.

2.2. Research intensity

At least as challenging is the issue of research intensity, already
recognised by Rick (1987). Notwithstanding locally eclectic prac-
tices, the number of C samples dated in any region may best
reflect that region's economic fortunes over the last 30 years, rather
than its population in prehistory, but even within regions of com-
parable prosperity, perceptions as to the relative importance of
different archaeological phenomena and the utility of “C and other
dating methods mean that resources will be unevenly directed to-
wards dating different periods. A further complicating factor is that
researchers collecting “C results published in academic literature
may be unaware of larger and perhaps less selective data sets
generated by commercial archaeology (as Crombé and Robinson
(2014) have recently observed). Attempts to “correct” Sum

distributions for differential research intensity, either by summing
the calibrated pooled means of 'C results from individual sites/site-
phases (e.g. Shennan and Edinborough, 2007; Buchanan et al.,
2008; Tallavaara et al,, 2010) or by summing the calibrated dates
for individual sites before summing the sums (e.g., Collard et al.,
2010; Hinz et al., 2012) have never been justified on statistical
grounds. They also clearly run counter to the assumption that larger
populations would produce more datable material, as normalisation
gives equal weight to every site or site-phase; Crombé and
Robinson (2014) discuss how changing settlement patterns can
then give rise to spurious fluctuations in Sum distributions.

2.3. Calibration and software issues

Another challenge faced by the Sum approach is to account for
the effects of “C calibration. Sum distributions of uncalibrated 4C
results must, by definition, be misleading, as the relationship be-
tween calendar and '4C ages is not at all linear: if C samples are
uniformly distributed in calendar age, there will be many more C
results corresponding to calibration “plateaus” than to steeper sec-
tions of the %C calibration curve (Reimer et al., 2013). Notwith-
standing the suggestion by Hinz et al. (2012) that the 'C calibration
curve does not produce false peaks and troughs in a Sum distribution
of a sufficient number of calibrated ™C results, it can easily be
demonstrated that simulated C determinations for samples whose
calendar dates are evenly spaced (e.g. at 10-year intervals) will give a
Sum distribution whose peaks and troughs directly correspond to
calibration-curve wiggles (e.g., Chiverrell et al., 2011; Prates et al.,
2013). The same pattern appears when the calendar ages of the
simulated “C determinations are randomly generated from a uni-
form distribution (e.g., Armit et al., 2013; Bleicher, 2013).

Some authors have subtracted an artificially generated “uni-
form” Sum distribution from the Sum “observed” in archaeological
14C data (e.g., Johnstone et al., 2006), or divided one distribution by
the other (Hoffmann et al, 2008), in order to separate the
calibration-derived peaks and troughs from the “residual” signal,
but this can only work if the temporal frequency of archaeological
14¢C samples was also constant. Equally, subtracting a Sum distri-
bution artificially generated by sampling an exponential distribu-
tion from a Sum distribution of archaeological 'C dates can only
correct for calibration wiggles if the real dates of the archaeological
14C samples were exponentially distributed. More sophisticated
computational approaches may eventually be successful in
reducing the impact of calibration wiggles (e.g., Shennan et al,,
2013; Kerr and McCormick, 2014), but certainly the problem must
be addressed.

2.4. Sampling

Even if calibration, taphonomic and research intensity biases
could be accounted for, however, data coverage remains a signifi-
cant challenge. Any given 'C data set represents a single — and
inevitably relatively small — sample of an unknown population of
datable material produced during the period under investigation.
The probability that this sample approximates the population from
which it was drawn relates directly to sample size, and in the cases
of spans of time more particularly to data density (i.e., number of
14C dates per given span of time). In order for robust patterns —
which might be attributed to population changes — to be discerned
in Sum distributions, data densities must be sufficiently high to
reveal population changes of the posited magnitude and duration.
The lack of a consensus definition for the magnitude and duration
of either a “significant” population fluctuation or a “significant”
wiggle in a Sum distribution remains a considerable conceptual
hurdle, one to which we return below in evaluating the results of
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Fig. 2. European population curve (derived from Bennett's 1954 estimate as reported in Durand, 1977) that serves as the basis for simulations. Shaded area represents the pop-
ulation trough (i.e., the period between peak population in cal AD 1310 and recovery to that same level by approximately cal AD 1530).

our simulations. In general, while it may be possible to detect the
simple case that populations tend to increase rapidly with the
initial adoption of agriculture, or increase over time, prehistoric
demography at this coarse level is already accessible through other
proxies (i.e., site size and frequency). Detection of more complex,
short-term, or subtle population shifts must overcome the prob-
lems of statistical scatter inherent in 'C data, even supposing that
taphonomic and research intensity biases have been addressed. We
explore the use of simulated data to address this problem below.

3. Artificial data
3.1. Simulation approaches to C data sets

Whereas earlier publications (e.g., Gkiasta et al., 2003; Gamble
et al, 2005) made no attempt to check whether “patterns”
observed in Sum distributions might have arisen purely by chance,
comparisons between Sums of archaeological and artificial 14C data
are now published routinely. A common aim is to compare an
archaeological Sum distribution to a uniform distribution (corre-
sponding to a null hypothesis that a “population” does not change
over time). As indicated above, this approach also has the perceived
advantage of cancelling out spurious signals caused by C cali-
bration. To simulate such a uniform distribution, Buchanan et al.
(2011: 2120) calibrated 603 artificial C ages set at equal C year
intervals between 13,000 and 8000 uncal BP, a method (repeated in
Mulrooney, 2013) which, as well as disregarding the inevitable
statistical scatter in '*C measurements, guarantees a much lower
data density on calibration plateaus than during the brief steep
sections of the calibration curve. A more realistic uniform Sum
distribution can easily be implemented in OxCal, using simulated
14C ages (R_Simulate) for samples whose calendar dates are evenly
spaced (e.g., Chiverrell et al., 2011). The R_Simulate function returns
a different '“C age every time by randomly sampling the C ages
that might be measured for the sample, given the calendar date and
14C measurement error set by the user.

To approximate an archaeological “C data set, however, a
simulation should account not just for '#C measurement scatter, but
also for the effects of random sampling of potential 'C samples (of
course, variability in taphonomy and research intensity mean that
the archaeological C data do not represent an entirely random
sample — but the premise of the Sum approach, as of many other
approaches to archaeological data, is that it may be treated as such).
In other words, rather than being spaced to match the null-
hypothesis population time-series — typically, as described above,
expressed as a uniform distribution — the calendar dates of simu-
lated '“C samples themselves should comprise a random sample
from such a distribution. The result will over-represent some years
and under-represent others, reflecting the realities of random
sampling and the effects of sample sizes. A Sum distribution of
calibrated simulated C ages for samples whose calendar dates
were randomly generated from a uniform distribution (Armit et al.,
2013) therefore better approximates an archaeological data set. An
exponential null-hypothesis curve may be interpreted as a pre-
sumption of steady population increase over time, but is typically
intended to represent time-dependent survival of datable material
generated by a constant population (Surovell and Brantingham,
2007). Arguably, there is no real justification for assuming a con-
stant population as the null hypothesis, but operationally it is easier
to implement and explain than a more complex pattern.

As well as calibration-related wiggles, therefore, in a realistic
simulated Sum distribution there will inevitably be features (peaks or
troughs) caused by random sampling and C measurement scatter,
both of which are unavoidable in archaeological data. Any simulation
exercise should be run repeatedly to see how variable its output is;
features that do not appear in all simulations probably represent
statistical noise. If a simulated uniform Sum distribution regularly
contains features comparable to those in an archaeological Sum dis-
tribution with similar data density and measurement precision, we
cannot attribute the features in the archaeological Sum distribution to
population fluctuations (e.g., Bamforth and Grund, 2012). One way to
assess the significance of any features seen in archaeological Sum
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distributions is to observe how often a simulated null-hypothesis
Sum contains similar features (Shennan et al., 2013).

3.2. A flexible method for generating realistic artificial data

Although it is easy to generate random numbers from stan-
dard statistical distributions (e.g., uniform, exponential,
Gaussian), it can be laborious to rigorously sample more complex
distributions (e.g. Bayliss et al., 2013). We therefore constructed
a flexible tool (datesim) in R (2013),> which generates a spec-
ified number of calendar dates by randomly sampling a user-
specified custom distribution (corresponding for instance to a
population curve with trends and fluctuations of particular
amplitude and duration). The tool also generates individual
measurement errors for the simulated samples, randomly
sampled from a uniform distribution whose parameters can be
set to reflect '#C measurement errors in the archaeological data
set of interest. The R output is a .csv file which can be imported
into OxCal, using either the R_Simulate function (which gener-
ates realistic ¥C ages for samples, given their specified mea-
surement errors, and calibrates the simulated 'C results), or
C_Simulate (which generates a calendar date for each sample,
based on its “real” date produced in R and its specified mea-

surement error). Like R_Simulate, C_Simulate demonstrates the
impact of measurement scatter, but it eliminates patterns
imposed by the calibration curve itself. The Sum of the calendar/
calibrated date distributions can then be compared to the pop-
ulation history from which it was derived.

3.3. Specification

Two steps are required to simulate dates from a particular
population curve, or probability density function:

1) the approximation of the probabilities that will govern sample
selection, which can be based on an empirical or artificial pop-
ulation curve (we used Plot Digitizer (http://plotdigitizer.
sourceforge.net/) to convert published population curves to
time-series data), and

2) the selection of a specified number of samples from a given
calendar date range (corresponding to the range of the input
curve, or subset thereof) and the corresponding randomly-
generated measurement errors (drawn from a uniform distri-
bution with a specified maximum and minimum; it would be
possible to specify other distributions if desired). The annotated
R code is provided below.

Step 1°

#Digitize the population curve so that it is represented as a series of

values (pop$V1) corresponding to dates

values will already have this form),

(pop$V2) (a table of population

then interpolate the missing values

using approx (). The frequencies of values in the resulting data frame (here
“popinterp”) will serve as the probabilities (here “probs”) for sample() in
Step 2.

popinterp<-approx (x=pop$Vl, y=pop$V2,

rule=2)
probs<-popinterpS$y/sum(popinterpSy)

method="1linear", xout=1000:1700,

Step 2

#Create a ‘datesim’ function that takes the inputs described below and
draws a random sample with replacement using the probabilities provided by
the interpolated population curve calculated in Step 1 (here “probs”). The
output from ‘datesim’ is a matrix with three columns of data corresponding
to an arbitrary sample designation (here “Al”, “A2”, etc), the randomly
generated date, and a randomly generated measurement error drawn from a
uniform distribution whose parameters may be specified (in this example,

between 20 and 40; other distributions may also be specified).

The results

may be exported via write.csv () and then copied directly into OxCal using

the Import tool.

#num = length (sample)

#oldest = min(sample)

#youngest = max (sample)

#format can be either BP or BC/AD

datesim<-function (num, oldest, youngest)
replace=T, prob=probs)),

sort (sample (c (oldest:youngest), num,
round ( (runif (num,20,40)),0))}

2 The application described here also uses the ‘stats’ package (“The R Stats
Package” — http://stat.ethz.ch/R-manual/R-patched|library/stats/html/00Index.
html).

{cbind (paste ("A", l:num, sep=""),

3 The type of interpolation is definable by ‘method’ in approx(); “approx
returns a list with components x and y, containing n coordinates which interpolate
the given data points according to the method (and rule) desired.” (http://stat.
ethz.ch/R-manual/R-patched/library/stats/html/approxfun.html). In the case that
rather than a series of data points a mathematically defined curve were available,
Step 1 could be skipped and the curve could govern the sampling probabilities
directly (defined as ‘prob’ in sample()).
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Fig. 3. Randomly selected (from the five sets of samples generated) plot of 1000 samples, run through R_Simulate.

3.4. Worked examples

We describe two the examples here, each deriving simulated
dates from extant population data corresponding to a period of
recognized population change and historical impact — i.e., the sorts
of periods and population changes which Sum approaches aspire to
describe.

3.4.1. “Bring Out Your Dead”: demography and significance of the
Black Death in 14th century Europe

The Black Death was a series of epidemics of the bubonic plague
that devastated Eurasia in the 14th century AD, and is particularly
well-known from European historical sources, allowing realistic
reconstructions of its cumulative impact on population. Moreover,
the population reductions resulting from the Black Death had a
long-term economic impact which can be traced in succeeding
centuries (cf. Pamuk, 2007; among many), and it is manifest in the
archaeological record, e.g. in mass burials of plague victims
(Antoine, 2008) and in the abandonment of thousands of villages
and farms across Europe (Yeloff and van Geel, 2007 Antonson,
2009). The shortage of agricultural labourers led to reforestation
on such a scale that its impact may even have caused the notable
decline in atmospheric CO; concentration in the later 14th century
(Ruddiman, 2003). Given such a population impact and such
important repercussions, it represents the type of demographic

event we would hope to be able to detect unambiguously in a Sum
distribution.

For the sake of this exercise, we used Bennett's (1954; summa-
rized in Durand, 1977) population estimates to create a European
population curve spanning the years AD 1000—1700. Although
estimates of European population in this period vary, and are more
accurate and precise for some countries than others (cf. Livi-Bacci,
1999; Pamuk, 2007), for our purposes the magnitude and duration
of the population crash are important rather than the details. Our
simulation is concerned not with accurately modelling this partic-
ular demographic event, but rather with attempting to reproduce
the selected population curve using the Sum approach.

In our population curve, after rising relatively steadily for the
first three centuries of this period, population declined abruptly
between AD 1310 (87 million) and 1350 (71 million), and further
declined to 67 million by AD 1415, before recovering to 79 million
(AD 1451) and finally overtaking its pre-Black Death peak in c. AD
1550. Thus the population trough was both deep and prolonged
(see Fig. 2); the magnitude and duration were large enough to have
significant historical effects and the event thus provides a realistic
analogue for the kinds of population fluctuations in prehistory in
which we might be interested.

3.4.1.1. Simulation parameters. Five batches of samples of 200,
1000, and 2000 dates were drawn from this distribution, with
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Fig. 4. Population of the Basin of Mexico, derived by averaging McCaa's (1995) estimates. The blue rectangle demarcates the population peak between cal AD 1450 and 1560 (by
which time population had dropped to 1450 levels — an arbitrary reference point — again) and the grey rectangle the post-contact trough, beginning in cal AD 1520 and continuing
until 1825, when population had recovered to 1450 levels. These rectangles delineate two distinct population phenomena: a discrete and ephemeral spike, and a crash followed by
partial recovery. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Comparison of C data density in a selection of typical publications that use fluctuations in Sum distributions as proxies for fluctuations in demographics or activity (we have
excluded studies that focus primarily on long-term trajectories).

Study

Number of dates®

Approximate period”
(calendar years)

Approximate data density
(dates/year) [Effective density‘]

Armit et al., 2013
Buchanan et al., 2008
Collard et al., 2010
Gamble et al., 2005

Gkiasta et al., 2003

Hinz et al., 2012

Mulrooney 2013

Riede, 2008

Rieth et al., 2011

Shennan and Edinborough, 2007

Shennan et al., 2013
Tallavaara et al., 2010

This study

1554

1509 (628 dates or pooled means)
42462129 (sum of 1762 sums)

2255, split into subsets of 28—500 dates

2600 (subsets often <100)

3176 (subsets of 22—576 dates, summed by site)
313 (subsets <200)

139 (subsets of 2—53 dates)

303

2311 (compare sets of 996, 213, and 366 dates;
compare 294, 66, and 162 pooled means)
13,658 (compare sets of 281—1732 dates,
summed within 151—928 ‘bins’)

1789 dates (1160 pooled means; compare
subsets of 238—513)

200, 1000, 2000 simulated

1200 cal BC—cal AD 400 (1600)
15—9 ka cal BP (6000)
8000—4000 cal BC (4000)
“25—11 ka calibrated radiocarbon
years” (14,000)

10-5 ka cal BP (5000)
4500—2500 cal BC (2000)

cal AD 1200—1800 (600)

15—11 ka cal BP (4000)

cal AD 1200—1600 (400)
7000—2000 cal BC (5000)

10—4 ka cal BP (6000)
11—-1 ka cal BP (10,000)

cal AD 1000—1700 and
1000—1800 (700—800)

1.0
0.25[0.1]

1.1/0.5 [0.4]

0.15 [0.002—0.04]

0.5 [0.02-0.2]
1.6 [0.01-0.1]
0.5 [0.1-0.3]
0.03 [<0.01]
0.75
0.4[0.01-0.2]

2.3[0.04—0.23]
0.2 [0.02—-0.05]

0.29, 1.43, 2.86 and 0.25, 1.25, 2.50

@ (Criteria for excluding misleading dates vary between studies, but (as Shennan and Edinborough, 2007 point out) it is impossible to eliminate all misleading dates in
archaeological data sets. Several studies combine some dates before summing, either by calculating a pooled mean of dates from one site-phase, or summing the dates from

one site-phase and treating their sum as a single date. Most studies also split their data sets to compare Sums of subsets of the data.

b Exact timespan is often not specified, and criteria for including marginal dates will vary between studies.
¢ Approximate data density in Sums of smaller subsets of dates compared in the study, averaged over the relevant date ranges (which may be shorter than the overall period

of interest).
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Fig. 7. As Fig. 6, but with sample sizes of 1000 rather than 200; even at this sample density (on average, 1-2 samples per year), the trough corresponding to the Black Death is barely
visible in the date sum. As can be expected, variability between samples decreases as sample size increases (compare with Fig. 6).

measurement errors uniformly distributed between 20 and 40
years (a further selection of the same samples but with errors be-
tween 20 and 100 years was also generated to examine the effects
of measurement error, discussed below), with samples drawn from
the period AD 1000—1700. Both C_Simulate and R_Simulate func-
tions were used to generate the sums that are discussed below.

3.4.1.2. Results. We illustrate the results of this simulation with
one of the randomly-generated batches of 1000 samples (Fig. 3),
already optimistic in both its measurement precision (i.e., mea-
surement errors of 20—40 years), and in its data density (>1 date/
year on average). What might we conclude on the basis of this
assemblage of 'C dates? The dip in the sum curve at approxi-
mately cal AD 1450 might lead one to suppose that a decline
during the period of the Black Death is detectable. A gradual in-
crease in the centuries leading up to the plague period is also
detectable, but after cal AD 1450 the “population” never seems to
reach pre-plague levels again, much less surpass them. In addition,
the plague trough seems to contain two distinct crash episodes,
one at about cal AD 1300 and the other at about cal AD 1420. The
calendar range of the Sum is also of note: even in the absence of
samples introducing spurious ages, the combination of the cali-
bration curve and C measurement uncertainty produces a sum
that is not confined to the cal AD 1000—1700 range from which
the original samples are drawn. Clearly these tails are to be

disregarded, but distinguishing tails from the range of the sampled
population presents an additional hurdle in the case of unknown
populations.

This example, illustrating a realistic (and optimistic, in that er-
rors are small and data density high) case, highlights a problem to
which we will return below: how is the aspiring demographer to
determine which fluctuations to recognize as related to popula-
tion? The trough at approximately cal AD 1450 does indeed appear
to register in some way the effect of the Black Death, but without
prior knowledge would we recognize it as such? As the height of
the sum curve does not have a direct relationship to any particular
cultural or demographic variable, assessing the implications and
scales of visible fluctuations remains a subjective exercise (a point
to which we return in Section 4.5). We will also return below, in the
Section 4, to the effects of varying the data density and magnitude
of measurement errors.

3.4.2. “..now a very great and notable fraction of the people are
gone”?: 16th century demographic catastrophe in the Americas

One of the major structuring factors of the modern world was
the catastrophic impact of European diseases on the indigenous
inhabitants of the Western Hemisphere. With population losses

4 Ceynos 1565, quoted in McCaa 1995:430.
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estimated at up to 90% in the 16th century (cf. Livi-Bacci, 2006;
Lovell, 1992; McCaa, 1995, among many), and a long, slow de-
mographic recovery, Central Mexico from AD 1200—1700 provides
a historically attested example of the kind of extreme population
fluctuation that Sum approaches seek to identify in prehistory.
Using the mean of McCaa's (1995) high and low population esti-
mates for the Basin of Mexico, we complement the example of the
Black Death in Europe with this event of greater magnitude and
duration. In addition to the massive crash associated with the
impact of European diseases, this period in the Basin of Mexico is
also notable for the rapid population growth preceding European
arrival, the result of regional population aggregation associated
with the political ascendancy of the Triple Alliance (see Fig. 4).

3.4.2.1. Simulation parameters. Five batches of samples of 200,
1000, and 2000 dates were drawn from this distribution, with
measurement errors uniformly distributed between 20 and 40
years (a further selection of the same samples but with errors be-
tween 20 and 100 years was also generated to examine the effects
of measurement error, discussed below), with samples drawn from
the period AD 1000—1800. Both C_Simulate and R_Simulate func-
tions were used to generate the sums that are discussed below.

3.4.2.2. Results. The discrete spike in population in this data set
(Fig. 4) represents an ideal case for detection by any demographic

proxy (indeed, the timing and magnitude of the 14th—15th century
population increase are inferred from archaeological settlement
survey (cf. Parsons, 1974)). The sharp 15th century rise reflects the
florescence of the Triple Alliance, while the subsequent disastrous
crash resulted from the arrival of the Spanish in the Basin of Mexico.
It should thus perhaps come as no surprise that this spike is also
evident in the summed simulated '“C data, with both a sudden
increase and a sudden decrease apparent; we illustrate this with a
randomly selected batch of 1000 samples in Fig. 5. As noted pre-
viously, however, there is no clear methodology for interpreting the
Sum distribution. Although the general pattern is visible, various
problems are also apparent: the 18th-century recovery is not
evident, the timing, duration, and magnitude of the 15th-century
spike are inconsistent with those in the original population curve,
and the pre-1400 population curve is characterized by spurious
variability. We address these issues in Section 4.

4. Discussion

Several parameters can influence the shape of the summed '4C
curves; one of the advantages of working with simulated data is the
ability to explore the effects of varying these parameters individ-
ually. Here we examine the effects of random sampling, data den-
sity, measurement uncertainty, and the calibration curve with
reference to various data sets generated using our two artificial
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scenarios, before turning to an evaluation of some of the problems
that may hamper interpretation of these Sum distributions as
population proxies.

4.1. Random sampling

The effects of random sampling are evident in Fig. 6. Even
without the meaningless peaks and troughs in Sum distributions
which stem from the calibration of '*C measurements (i.e., using
OxCal's C_Simulate function to generate realistic measurement
scatter, instead of R_Simulate), with 200 samples over 700 years (a
data density better than many published examples; see Table 1) the
effects of sampling are striking. Not only is the departure of these
curves from the population distribution from which they are
derived evident; the variability between samples is also notable:
the most prominent fluctuations in each curve are not visible in
most of the others. A Sum distribution of archaeological 'C data
would correspond to only one of these curves, and although sub-
samples might be compared to one another, the underlying pop-
ulation distribution remains fundamentally unknown. As a result, it
is difficult if not impossible to determine which, if any, of these
fluctuations represent real demographic changes. Reduced inter-
sample variability is evident as data density increases (Fig. 7), but
it remains the case that sampling can have a notable effect on the
structure of the Sum curves, and the vagaries of sampling alone
may be sufficient to introduce or obscure patterns that may be

taken as demographic indicators. This is the case in both practical
and theoretical terms.

In practical terms, it introduces the problem that even in an
ideal world, patterns in “C sums may result from factors other than
population fluctuations. As we discuss below, random sampling can
produce both false negatives (failures to detect real population
fluctuations) and false positives (features in Sum distributions that
may be mistaken for results of demographic changes but in fact
relate to other factors).

In theoretical terms, as any set of C dates comprises a single
sample — of many theoretically possible — sampling introduces a
degree of uncertainty into any assertion of the relationship of a
given set of “C data to the population of datable material from
which it was drawn. The populations (of datable material) from
which these samples are drawn remain fundamentally unknown,
and some uncertainty is therefore inherent in any linkage of a 14C
data set to the prehistoric population of datable material originally
produced (see Drennan, 2009:93—95 on the relationship between
archaeological samples and target populations). This uncertainty is
independent of any putative relationship between production of
datable material and human demography.

4.2. Data density

Larger samples more closely approach the original population
from which they are drawn — a fundamental tenet of statistics.
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Fig. 10. Basin of Mexico simulations; these show the same data with varying errors (20—40 in A and A’; 20—100 in B and B’) and with C_Simulate (A and B) and R_Simulate (A’ and B').

However, prescriptive approaches to necessary sample size (e.g.,
Hinz et al.,, 2012; Williams, 2012; cited by, e.g., Whitehouse et al.,
2013) must take into account the span of time and the magnitude
and duration of fluctuations or trends which the study seeks to
detect. Assertions about necessary andjor sufficient numbers of 4C
dates should be assertions about data density, rather than numbers
of samples.

We illustrate the effects of data density with examples from
both of our simulated cases (see Figs. 8 and 9). In the absence of
other confounding factors (i.e. 1C calibration), increasing sample
size — i.e., data density — clearly improves the fit of sum curves
to the population curve. However, even the highest data density
which we have tested — 2000 dates over a span of 700 years, or
2—3 dates/year — the Black Death is far from obvious. Our tested
data densities range from an average of 0.25/year (i.e., one date
per four years) to 2.86/year; most published examples use
archaeological data sets with 0.5—1.5 dates/year, although the
data are then often pooled or divided geographically, giving real
average data densities of 0.1 dates/year, or even less (see
Table 1).

4.3. Measurement precision

The precision of the C determinations that serve as the basis
for the Sum is also a vital parameter. The general basis for our
simulations here is a realistic best-case scenario of errors ranging
from 20 to 40 years, which is typical of recent "C determinations
on relatively young samples (mid-Holocene or later). If — as is likely

in incorporating dates from older data sets — errors are instead
simulated as ranging from 20 to 100 years, the resulting Sum dis-
tributions are smoother and fluctuations less likely to be detected
(Fig. 10; also see Culleton, 2008). The inclusion of legacy data — a
feature of all the published examples cited above — thus increases
data density but blurs any features.’

A further complication with regard to linking '¥C sums to past
populations is the likelihood of some mismatch between sample
age and the date of the target event. Problems such as wood-age
offsets, residence time, etc. reduce the effectiveness of measure-
ment precision, but not symmetrically (see discussion in Bronk
Ramsey, 2009b). Even when data sets are subjected to rigorous
chronometric hygiene (Spriggs, 1989), we are likely often over-
estimating their precision — again a problem endemic to the use of
legacy data. This can contribute to blurring of signals (e.g., by
producing a spread of dates for a single event, giving the appear-
ance of longer duration and/or making a signal even harder to
detect in a Sum of 'C dates) or attribution of a precise but inac-
curate date for a particular event (i.e., in the case that an event is
represented only by C dates which do not accurately match the
event). Inasmuch as the correspondence between particular events

5 Smoothing algorithms (e.g., rolling means) have also been applied to Sum
distributions in some studies (e.g. Hinz et al., 2012; Kelly et al., 2013), though there
is a clear risk of effacing real signals as well as noise and in spite of the absence of
any particular statistical justification. We have not investigated what effect they
might have on our simulated Sums.
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and dated material can be fundamental to the interpretation of Sum
approaches (if, for instance, they attempt to relate a population
fluctuation to an exogenous event; e.g., Buchanan et al.,, 2008;
Riede, 2009), erosion of precision by any of these factors presents
an obstacle that must be negotiated.

4.4. Calibrated dates

Using R_Simulate rather than C_Simulate — i.e., building Sum
distributions from irregular calibrated probability density functions
rather than Gaussian ones which only take into account measure-
ment error (see Section 3.2, above) — logically produces spikier, less
regular Sum distributions. We illustrate these effects for both
simulations (Fig. 11).

Unless a researcher can completely compensate for such irreg-
ularities, which (we believe) is impossible without knowing the
underlying distribution of the dates of the samples (the very pattern
a researcher hopes to reconstruct from the Sum distribution), cali-
bration creates a further challenge: the distortions of the Sum dis-
tribution caused by calibration will depend on the calibrated date
range under consideration. This is illustrated in Fig. 12, in which the
same Basin of Mexico simulated Sum distribution (Fig. 12A) has
been recreated 2000 (Fig. 12B) and 5000 (Fig. 12C) years earlier, in
the mid-1st and mid-4th millennia cal BC — periods chosen for

603

comparison with recent publications, by e.g. Armit et al. (2013) and
Hinz et al. (2012). In the first case, the calibration plateau between
750 and 400 cal BC spreads the peak region of the Sum distribution
earlier and later; in the second, there is a peak at the right date, but a
spurious peak as high as the “true” peak appears more than a
century later, and is followed by a steeper decline.

4.5. Resulting interpretive problems: recognizing patterns, and
separating patterns from noise

The interplay of these parameters can introduce several prob-
lems, even if we ignore the various factors that can attenuate or
complicate the relationship between prehistoric population and
production/preservation/analysis of datable material. To illustrate
these problems, we focus on two simulations of 1000 samples, one
each from the European and Mexican scenarios (Figs. 13 and 14
respectively). Using R_Simulate, we intentionally generate higher
data densities than available to most researchers, and use opti-
mistically precise measurement errors of 20—40 years for each
date. Nevertheless, several pitfalls are evident. We do not to suggest
that the problems discussed below are inevitable — but they may
occur, partly as the result of sampling bias, even at high data den-
sities. Their potential occurrence, in the case of inevitably singular
and not (easily, if at all) replicable archaeological samples,
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highlights the difficulty of interpretation of Sum distributions.
Identifying their occurrence, in the absence of a demographic curve
to which Sum proxies may be compared, remains a substantial
challenge.

The most fundamental problem of all is that of recognition —i.e.,
what constitutes an event and what not? In addition to the quality
and character of our data, we must be concerned with the magni-
tude of fluctuation, duration of fluctuation, and even timing of
fluctuation. Distinguishing between real and false positives and
negatives, in the absence of a reference curve as we have employed
in Figs. 13 and 14, becomes a major challenge for Sum approaches.
Deviation from either an ideal distribution or a modelled under-
lying trend (e.g., Shennan et al., 2013) is one possibility whose use
has been explored, but such approaches still face the problem of
distinguishing the duration and the magnitude of such deviations,
as well as determining whether population change or some con-
founding factor has produced the fluctuation(s).

4.5.1. False positives and negatives

One risk is that peaks or troughs that result from random
sampling or the calibration curve might be interpreted as reflecting
population changes. In these examples (Figs. 13A and 14B), a
prominent peak or trough appears in the Sum distribution in a
period in which the original population is uniform (or trending in
the opposite direction).

The inverse — erasure of real patterns by random sampling,
calibration, or measurement scatter — is also a risk. In such cases,
the Sum distribution does not show a peak or trough where one
should be, based on the underlying population, or at least, the
deviation from uniformity is no more prominent than other de-
viations that are clearly spurious (Fig. 13B; 13A is arguable at best).

4.5.2. Timing

Even in cases when a peak or trough may be accurately and
confidently detected, it can be difficult to date it correctly, or to
estimate its duration (Figs. 13 and 14; magnitudes of timing errors
approximately 70—130 years). This can potentially create false
synchronisms with precisely-dated events, or disguise real
synchronisms.

4.5.3. Scale

The amplitude of a peak or trough depends on many factors, and
it is difficult (if indeed possible) to translate this into a proportional
change in population, or to set appropriate thresholds for signifi-
cance. In addition, we have to define models of what constitutes a
demographic crisis and re-population, or a population boom, to be
able to specify the spikes we are looking for. We know, for example,
that the Basin of Mexico population fell by 90% between 1520 and
1600, but we only see a drop of approximately 50%, about 100 years
later, in both the Sum distributions in Fig. 14. Any other decline
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Fig. 13. Two runs of 1000 samples from the Black Death produced with R_Simulate. The upper run (A) shows a probable true positive in the form of a minimum at about cal AD 1350,
a false positive in the spike just before cal AD 1400, and puts the timing of the population crash somewhat too early. The lower run (B) shows no crash — a false negative — at cal AD
1350, and a trough at cal AD ~1450 that may be either a false positive or a mis-timed true positive.

visible in Fig. 14 is spurious, by definition, yet (by comparison with
Fig. 13) the 14th-century “false positive” declines could also
correspond to events more devastating than the Black Death.

4.5.4. Edge effects

One of the effects of measurement uncertainty and calibration is
to spread the calibrated C dates beyond the range of time from
which samples were drawn — e.g., in Fig. 3 samples from cal AD
1000—1700 produce a Sum distribution that spans approximately
the period cal AD 800—1950. These edge effects are obvious in 4C
samples simulated from a known population, but present a prob-
lem when dealing with an unknown archaeological population that
is itself the object of investigation, particularly if researchers are
primarily interested in the start or end of settlement (e.g., Rieth
et al., 2011; Mulrooney, 2013) and are therefore unable to ignore
the tails of their Sum distributions. In other situations, authors have
deliberately summed dates from a wider timespan than the period
of interest, in order to minimize edge effects, but we are not aware
of any rigorous testing of this method.

5. Concluding remarks
The simulations that we have discussed, of historically attested

population fluctuations with significant social/political re-
percussions, show that even under ideal conditions, it is difficult to

distinguish between real and spurious population patterns, or to
accurately date sharp fluctuations, even with data densities much
higher than in most published attempts. Both advocates and critics
of a ‘Sum’ approach might hope that simulation studies would
produce baseline criteria regarding both requisite data densities
and the duration and magnitude of posited population fluctuations
— i.e.,, a simple means of estimating whether a fluctuation is of a
magnitude and duration sufficient to suggest that it reflects real
population patterning rather than statistical noise. Unfortunately,
the abundance of variables — e.g., population size, event duration
and magnitude, magnitudes of dating errors, calibrated date range
— and the irregular population distributions that we are trying to
reconstruct (of interest precisely because they are irregular — i.e.,
population crashes or spikes), mean that any such rule of thumb is
likely to represent wishful thinking rather than rigorous evaluation.
In addition, judgements about the ‘reality’ of patterns detected in
summed radiocarbon data face the same challenge identified by
Cowgill (1977) with regard to significance tests in archaeology:
their proper use requires judgement and argument rather than
binary acceptance/rejection.

While it is possible that large numbers of truly random samples,
whose frequency of production, preservation, and analysis is pro-
portional to population size (and not affected by factors such as
differential preservation, variable research intensity, etc.), may
produce summed calibrated C probability distributions that
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Fig. 14. Two runs of 1000 samples from the Basin of Mexico produced with R_Simulate. Both runs show the real positive of the Basin of Mexico population spike, but peaking about
cal AD 1450 rather than cal AD 1520; similarly both detect a crash, but not occurring until about cal AD 1650. In other words, timing is the chief problem here, with the related
problem that the spike appears more a plateau than a peak. Both examples also show false positives in the 14th century, apparently artifacts of the calibration curve, as they appear

in both data sets.

identify population fluctuations in prehistory, our simulations
clearly indicate that extreme caution is warranted. We have
demonstrated that the Sum approach can obscure, as well as reveal,
rapid population changes, and suspect that the potential for false
positives and mis-timed events could suggest misleading links
between population and exogenous events.

In this paper, we have focussed on the use of Sum distributions
to detect population fluctuations rather than long-term trends, but
the datesim tool we provide might easily also be used to examine
the identification of long-term trends. We have used the Black
Death and Basin of Mexico illustrations because archaeologists are
and should be interested in population fluctuations on centennial
or shorter timescales; indeed the case studies cited in Table 1,
although they in some cases span several millennia, often focus on
shorter episodes within these periods, in which the population is
perceived to change rapidly (e.g., Kelly et al., 2013; Shennan et al.,
2013). As Shennan says, “Given the speed at which demographic
processes operate ... it is likely that they have a characteristic time
scale of 100s rather than 1000s of years (...), so the temporal res-
olution of our methods must be able to deal with this. A variety of
methods for detecting the existence of population fluctuations at
the required scale of resolution is now available, not least the use of
summed radiocarbon date distributions as a demographic proxy.”
(Shennan, 2013:302).

This is not to say that longer-term trends may not also be of
interest, and some of the same issues will also arise in studies of
population trajectories over timescales of many millennia (e.g.,
Peros et al., 2010; Williams, 2012). In these cases too a simulation
approach is likely to be useful in assessing the relative effects of
measurement scatter, calibration effects, taphonomy, and research
bias; our results here suggest that while the former two may be less
significant in obscuring long-term trends in Sum distributions, ef-
fects stemming from differential preservation and research in-
tensity may be more prominent. Moreover, studies of long-term
trends in Sum distributions are of use only to the degree to which
they can improve on the chronological resolution available from
other archaeological proxies for population trends (e.g. in many
cases, the number of sites occupied per millennium can already be
estimated from artifact assemblages; Tallavaara et al. (2010) even
propose a Ceramic Site Frequency Index covering 5000—500 BC
with 100-year resolution).

In the case of either short-term fluctuations or long-term trends,
we would recommend on the basis of our results that in any situ-
ation where the Sum approach is applied, it is incumbent upon
researchers to argue 1) that the link between production, preser-
vation, and analysis of datable organic material and population is in
that case sound, 2) that the C dates they employ can be considered
a random sample, 3) that the event(s) they seek to identify are of
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sufficient duration, relative to the average measurement un-
certainties, that it will be possible to identify them, 4) that the
sample size is large enough, relative to the span of time under
consideration, to be able to identify events of the magnitude
postulated, and 5) that the observed patterns are not the product of
the calibration curve. As problems 3, 4, and 5 are directly related to
the posited prehistoric population distribution — itself often of
interest precisely because it is irregular, i.e., does not conform to a
uniform or other standard distribution — they are best investigated
via simulation approaches such as the use of the datesim tool
presented here. Approaches that seek to test null hypotheses which
posit that the observed patterns in a Sum distribution could have
been produced by randomly sampling a simple population curve
(e.g., representing a constant population) focus on identifying
which departures from the null-hypothesis curve are statistically
significant; the results are assertions about past population fluc-
tuations (e.g. Shennan et al., 2013:Table 1) that could be tested
using the simulation tool that we present here. Only if the same
pattern is clearly and consistently reproduced by Sum distributions
of simulated dates with comparable data density and measurement
uncertainties to the archaeological “C results, drawn randomly
with probabilities based on the proposed population trajectory,
may it be argued that a C sum represents population fluctuations
rather than factors such as random sampling, the calibration curve,
research intensity, and taphonomic processes.

Minimally, therefore, researchers would be well-advised to
investigate via simulation whether it is in fact possible, much less
likely, to detect a population event of the magnitude and duration
that they propose to identify, given the numbers of samples avail-
able and the range of associated measurement errors. If the posited
demographic pattern is in principle detectable, it remains of course
to argue that in any given case it has been interpreted accurately.
We hope the method that we have detailed here can enable such a
reflexive approach.
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