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a b s t r a c t

Assessing the implications of paleoclimatic and paleoenvironmental data at temporal and spatial scales
that would have directly intersected with human decision-making and activity is a fundamental
archaeological challenge. This paper addresses this challenge by presenting a spatial and temporal
downscaling method that can provide quantitative high-spatio-temporal-resolution estimates of the
local consequences of climatic change. Using a case study in Provence (France) we demonstrate that a
centennial-scale Mediterranean-wide model of Holocene climate, in conjunction with modern geospatial
and climate data, can be used to generate explicit and solidly-grounded monthly estimates of temper-
ature, precipitation, and cloudiness at landscape scales and with annual resolution, enabling consider-
ation of climate variability at human scales and meeting the data requirements of socioecological models
focused on human activity. While the results are not reconstructions e that is, particular values are
single realizations, consistent with the coarse-grained data but not individually empirically derived nor
unique solutions e they provide a more suitable basis for assessing the human consequences of climate
change than can coarse-grained data.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Interpreting the consequences of environmental change for past
peoples is a longstanding concern of archaeology, and often the
‘hook’ for paleoclimatic or paleoenvironmental studies as well.
Developing explanatory links has remained a persistent challenge,
however, and studies that are able to move beyond correlation to
causation remain rare. Much of this difficulty results from the
challenge of assessing the implications of paleoclimatic and pale-
oenvironmental data at temporal and spatial scales that would
have been directly relevant to human decision-making and activity.
We address this problem by developing a spatial and temporal
downscaling method that can provide quantitative high-
spatiotemporal-resolution estimates of the local consequences of
sultants, 257 East 200 South,
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climatic change. Using a case study in Provence we demonstrate
that a centennial-scale Mediterranean-wide model of Holocene
climate, in conjunction with modern geographic and climatic data,
can be used to generate solidly-grounded monthly estimates of
temperature, precipitation, and cloudiness at a 300m spatial scale
and with annual resolution. These results, it must be emphasized,
are not reconstructions: they are single realizations consistent with
coarse-grained data, but individual values are not directly empiri-
cally derived. Downscaling generates one set of values consistent
with the coarse-grained input data, but the results are not unique
solutions (Bierkens et al., 2000, p. 111; Wu and Li, 2006, p. 35).
However, they provide a more suitable basis for assessing the hu-
man consequences of climate change than can coarse-grained data,
as analyses of past human-environment interaction grounded in
anthropological archaeology require high spatial and temporal
resolution. Anthropological archaeological explanation relies on
theoretical models of human behavior and decision-making that
are necessarily grounded in human experience: spatial and tem-
poral scalesmeasured in hectares and years rather than regions and
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centuries.
In this paper we review these issues of scale and resolution in

the study of past human-environment interactions before
demonstrating how spatial and temporal downscaling has the po-
tential to address the challenge of relating spatially and temporally
coarse-grained paleoclimate data to fine-grained anthropologi-
cally-grounded explanations of past human behavior. We explore
the application of spatial downscaling of paleoclimate data to
provide high spatial resolution, and temporal downscaling to pro-
vide high temporal resolution. This combined approach enables
consideration of landscape-scale spatial variability in past climates
(vital in topographically diverse landscapes inwhich climate effects
would not have been spatially uniform) as well as consideration of
interannual variability. Such downscaling is a necessary tool for
considering the human consequences of climate changes docu-
mented in spatial and temporal aggregate.

2. Scale and resolution in the study of past human-
environment interactions

Description and analysis of past human-environment in-
teractions, particularly over the long-term, comprises a funda-
mental goal of archaeology. This focus underlies several of the
recently-articulated “grand challenges for archaeology” (Kintigh
et al., 2014), and has been singled out in 21st century discussions
of the discipline as central to archaeology's contribution to inter-
disciplinary efforts to understand past and present socio-
environmental systems, as well as of pressing modern relevance
(e.g., Van der Leeuw and Redman, 2002; Smith et al., 2012).

Analysis of long-term human-environment interactions prom-
ises improved understanding of both cultural and environmental
trajectories, and provides a tool for examining the anthropogenic
component of past and modern environment and climate. It is
fundamental to ongoing debates over the Anthropocene, in which
archaeologists, paleoenvironmental scientists, and geologists
dispute the antiquity, character, and significance of that period (e.g.,
Braje, 2015; Crutzen and Steffen, 2003; Erlandson and Braje, 2013;
Morrison, 2015; Ruddiman, 2013; Smith and Zeder, 2013;
Zalasiewicz et al., 2015).

However, such analysis continues to be challenged by problems
of spatial and temporal scale and resolution (cf. Contreras, 2017).
The problem is not unique to archaeology, but central also to
modern discussions of climate change: what are the local conse-
quences of global climate? In analytical terms, how can we move
from global summary data to local characterizations that enable
consideration of the human consequences of climate change?
Moreover, as the global effects of local behaviors can also be sig-
nificant for large-scale modeling, the inverse problem is also an
important focus: in order to estimate the aggregate global impact of
local behaviors, those behaviors must themselves be modeled,
taking into account how diverse actors respond to local conditions.

The need to reconcile contrasting scales and resolutions results
partly from evidentiary constraints, and partly from contrasting
foci and explanatory mechanisms of archaeology on the one hand
and paleoclimatic and paleoenvironmental science on the other.
Paleoclimatic and paleoenvironmental science often strives to
achieve regional and long-term relevance, resulting in coarser
(regional and centennial) scales of analysis. In contrast, archaeo-
logical explanation relies fundamentally on anthropological models
of behavior e i.e., understandings of human activity that are
grounded in decision-making at local and annual scales. As a result,
linking analyses that focus on distinct scales, with varying resolu-
tions, is vital to relating archaeological and paleoclimatic and
paleoenvironmental data, and has been the focus of both practical
and theoretical consideration in archaeology (e.g., Stein, 1993; Lock
and Molyneaux, 2006; Robb and Pauketat, 2013; Kintigh and
Ingram, 2018). Nevertheless, analysis (and even description) of
human-environment interaction remains difficult at best with
coarse-grained data, and must confront basic questions of scale and
resolution: In space, what do regional-scale data mean for
landscape-scale experience, and in time, what do centennial-scale
data mean for annual or seasonal experience?

This problem is endemic to applications of regional modeling to
archaeological explanation (cf. Brayshaw et al., 2011, p. 28): even
when they succeed in revealing interesting patterning, coarse-
grained models can suggest broad correlations but require finer-
grained analyses if explanatory linking mechanisms are to be pur-
sued. High-resolution empirical data might be ideal, but it is (given
the character of paleoclimatic, paleoenvironmental, and archaeo-
logical archives) rare and spatially and temporally uneven. In their
absence, when only a limited number of observations for a broad
areawith varied topographymay be available from recorded and/or
modeled data, it is possible to take modern data from that area and,
presuming the climate-geography relationships to have remained
relatively constant over time, reconstruct realistically spatially
variable climate data. Similarly, modern (recorded) interannual
variability can serve as the basis for realistically modeling temporal
variability in climate variables. Spatial and temporal downscaling
thus offer a way of mobilizing uneven data to explore potential
linking mechanisms between climate variables and human
behavior, and ultimately a way of developing arguments that move
from correlation to explanation.

2.1. Downscaling

Downscaling addresses the problem of deriving small-scale
values from large-scale aggregates (Bierkens et al., 2000, pp.
111e118; Wilby et al., 2004; Wu and Li, 2006, pp. 34e36). The
principle is that any summary value is by its definition a product of
a number of possible individual values that evenwhen not precisely
known can be probabilistically estimated. We focus here on sta-
tistical downscaling of low-resolution climatic data to enable
generation of climate variables at the landscape scale. This is based
on applying relationships between high-resolution and low-
resolution fields, calibrated based on time periods where both
exist, to the target low-resolution field.

The climate-modeling community has explored downscaling of
climate data, stimulated by the desire to address regional impacts
of climate change in scenarios where global climatemodels (GCMs)
are the primary data source (cf. Fowler et al., 2007; Wilby et al.,
2004). The focus has primarily been on future impacts, but the
paleoclimate community (e.g., Korhonen et al., 2014; Levavasseur
et al., 2011; Vrac et al., 2007) has also begun to explore the po-
tential of downscaling methods as means of examining regional or
implications of global models of past climate. Geographically-based
downscaling (e.g., Joly et al., 2010; Martin et al., 2013; Vrac et al.,
2007) is one means of dealing with spatially heterogeneous land-
scapes, and is particularly valuable for applications to past climates,
as geographic variables are generally stable over archaeological
timescales, whereas regional climate relationships to GCMs may
have been significantly different in the past (cf. Vrac et al., 2007, p.
670).

Geographically-based methods that have been applied to pale-
oclimatological data are based on the calibration of potentially non-
linear relationships between the target high-resolution variable
and its low-resolution version, where the latter is complemented
by high-resolution geographical variables (topography, distance to
sea, etc.; see Vrac et al., 2007). The most appropriate calibration
technique is generally recognized to be a generalized additive
model (GAM) (Hastie and Tibshirani, 1990) or a multinominial
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logistic GAM when the variable to interpolate is categorical
(Levavasseur et al., 2011, 2013), but other geostatistical methods
have also been explored (e.g., Joly et al., 2010; Martin et al., 2013).
With fewer potential predictors available at higher spatial resolu-
tion and for the past, we have used simple regression to select
predictor variables (described in Section 3.2.1, below).

2.2. Downscaling for archaeology e potentials and limitations

Archaeologists, given their field's long interest in human-
environment interactions, are often avid consumers of paleo-
climate data. However, the potential of downscaling has been
largely neglected (with important recent exceptions; see Burke
et al., 2014; Gauthier, 2016). When downscaling has been
explored the target scales have, following the climate work, been
regional (with the notable recent exception of Bocinsky and Kohler,
2014).

Spatial and temporal downscaling produces values for climate
variables that, for any given pixel in any given year, are in all
probability inaccurate: they are single realizations and not unique
solutions. However, in aggregate the fidelity to the areal and tem-
poral means represented by the input paleoclimate data is high,
and is based on the reasonable assumptions that 1) modern re-
lationships between climate and geographic variables applied also
in the past, and 2) 20th century interannual variability resembles
past interannual variability. While the second assumption may be
questionable, in the absence of a local annually-resolved paleo-
climate archive a better model for interannual variability is
unavailable.

As in any modeling exercise, the data employed might also be
critiqued. The spatial and temporal downscaling approach pre-
sented here can be applied to virtually any input data, but the ac-
curacy of the results is wholly dependent on the accuracy of those
data. Comparisons across space and time within the same dataset,
however, can minimize the problem of absolute accuracy of results,
and in principle one might also vary the input data if multiple
sources were available.

As archaeologists are commonly consumers of paleoclimate
data, the archaeological use of climate data e whether from GCMs
or derived (as in our case study below) from paleoclimatic re-
constructions e is likely to be offline (using previously generated
results) rather than coupled to runs of global and/or regional
models. Inasmuch as that is the case, archaeologists are more likely
to employ statistical downscaling than dynamical downscaling (cf.
Fowler et al., 2007, pp. 1548e1552). Although the latter e coupled
models able to both incorporate and enable investigation of feed-
backs between human activity and climate dynamics e perhaps
have the most analytical promise (cf. Wilby et al., 2004, p. 11 on
human-climate feedbacks for contemporary and future models and
Kaplan et al. (2011) on the significance of past human activity for
regional and global climate), they are also the most complex
conceptually and computationally. We address here the less
optimal but nevertheless vital statistical downscaling of pre-
existing climate data, which represents the more likely scenario
for most archaeological practitioners and still promises to enhance
archaeological interpretation of the local consequences of past
climates.

Even offline, working with extant paleoclimate data/re-
constructions, spatial and temporal downscaling has significant
potential to enable analytical consideration of human-
environment interactions at the scale and resolution necessary
to consider the human consequences of climate change. It is
important to emphasize that using paleoclimate data in archae-
ological interpretations without downscaling is also an exercise in
modeling: it posits a direct one-to-one relationship between local
and annual climates and spatially and temporally averaged
regional climate data. Box's dictum that “all models are wrong”
(Box, 1979) is apropos, and we argue that a downscaling approach
produces data that are more useful in archaeological interpreta-
tion, and less likely to mislead, than implicit models that posit
uniform climate over large areas and long timespans. That being
the case, we suggest that consideration of the implications
virtually any method of downscaling is likely to improve archae-
ological interpretation.

The human experience of climate is fundamentally local and
annual (if not in fact seasonal), and the consequences of changes in
climate are quotidian even if they are measured in aggregate.While
the use of global or regional paleoclimate data that is rarely sub-
decadal (and often much coarser) reflects the reality of data avail-
ability for most archaeological research, a downscaling approach
makes it possible to explicitly consider the local and annual im-
plications of such data. This can also provide the requisite spatially
explicit and quantitative basis for further modeling that addresses
particular questions about the human past, especially past human-
environment interactions, including agricultural niche modeling
(e.g., Bocinsky and Kohler, 2014; d’Alpoim Guedes et al., 2016),
agroecosystem modeling (e.g., Contreras et al., in press), agent-
based modeling of subsistence activity (e.g., Barton et al., 2010;
Kohler et al., 2012), and isoscape modeling (e.g., Kootker et al.,
2016; Willmes et al., 2018). The higher resolution produced by
downscaling can enable models suited to construction of more
robust arguments about the implications of past environmental
change for human experience.

Preindustrial agriculture is a likely mechanism linking chang-
ing climates to socioeconomic change (Currie et al., 2015;
Schwindt et al., 2016), making the relationship of settlement
distributions to climate variables a potential means of examining
human ecodynamics. Archaeologists have attempted to recon-
struct past ecodynamics by, for example, comparing archaeolog-
ical settlement patterns against spatial patterning of modern
maize productivity in Central Mexico (Gorenflo and Gale, 1986) or
against potato and maize productivity in the Central Andes
(Seltzer and Hastorf, 1990). More recent efforts have involved
sophisticated digital modeling of precipitation-limited maize
agriculture in the U.S. Southwest (Bocinsky and Kohler, 2014) or
temperature-limited cereal agriculture on the Tibetan Plateau
(d’Alpoim Guedes et al., 2016). Questions of scale and resolution
are critical to the employment of thesemodels, as topographic and
climatic diversity can combine to create viable niches within
larger areas that are apparently unsuitable. As the example of the
Central Andes demonstrates, the potential exploitation (as well as
creation and management [cf. Erickson, 2000; Mamani Pati et al.,
2011]) of microclimates as agricultural niches suggests the
importance of fine-grained analysis and consideration of the po-
tential plasticity of thresholds.

A fourth dimension of variability can also be critical: both
interannual variability and change over time can be vital parame-
ters for inhabitants. Temporal downscaling enables some consid-
eration of interannual variability, potentially vital in areas where
long-term means are poor summaries of annual experience (e.g.,
where interannual variability is high). In areas where agricultural
or foraged resources are near biological thermal or hydrologic
limits (or even economic ones), long-term means may be poor in-
dicators of subsistence viability, as periodic low minima may be an
unacceptable risk. Re-aggregration of climate data over various
timespans can also enable direct comparison of one archaeological
period to another, for instance across archaeologically significant
thresholds.



Fig. 1. Area of the case study.
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3. Applying downscaling in archaeology: a case study in
Holocene Provence (France)

We illustrate the data requirements, spatial and temporal
downscaling methods, and interpretive payoffs with an example
from Holocene Provence.
3.1. Data

We present here a computational approach that uses modern
(20th-21st century) CNRM20141 and CRU TS v. 3.232 climate data to
relate climatic variables (temperature, precipitation, and cloudi-
ness) to geographic variables (primarily elevation and distance-
from-the-sea3) through geographically-weighted regression. As the
geographic variables are of high spatial resolution where the
climate variables are coarse (even for modern data), this relation-
ship can then be used to predict values of climate variables at high
spatial resolution.

The problem of temporal resolution is in turn addressed by
generating interannual variability within reconstructed trends
based on the estimated past seasonal amplitudes and the interan-
nual variability of the modern data. For case study region in Pro-
vence that we use here (a topographically diverse 40 km� 40 km
area; see Fig. 1), Guiot and Kaniewski's (2015) Holocene climate
reconstruction (HolCR) based on inverse vegetation modeling with
data from 295 pollen cores provides monthly reconstructions of
average daily temperature (ADT), total monthly precipitation
1 A simulation model based on instrumental data, described at http://www.cnrm.
meteo.fr/spip.php?article125 and available from the DRIAS Portal: http://www.
drias-climat.fr/.

2 Global coverage climate data at 0.5� resolution from 1901e2014, described in
Harris et al. (2014) and New et al. (2002), and available at https://5data.uea.ac.uk/
cru/data/hrg/cru_ts_3.23/cruts.1506241137.v3.23/.

3 Derived from the SRTM 30m digital elevation model (DEM) (NASA JPL, 2013).
As detailed below, more environmental variables could in principle be included. In
fact, for the case study, for each month and each climatic variable multiple envi-
ronmental variables were tested and those with the strongest predictive value used
(see Table 1).
(TMP), and % cloudiness (CLD) (see Fig. 2). These monthly values for
temperature, precipitation, and % cloudiness are provided at
centennial steps throughout the Holocene,4 but the 2� (latitude) by
4� (longitude) spatial resolution (approximately 225� 450 km cells
at Mediterranean latitudes) means that for the study area we use
here only a single value for each variable is available. Modern data
are higher resolution: for average daily temperature (TAV) and
average daily precipitation (PAV) data are available on an 8 km grid
from the CNRM2014 simulation for the period 1951e2005, while
monthly cloudiness (CLD) data are available for the period
1951e2010 at 100 resolution (approximately 18 km at the latitude of
the study area) from the CRU model. Calculating mean TAV and
cumulative PAV for each month is necessary to relate the
CRNM2014 and HolCR data.

The data sources and their spatial and temporal resolutions are
summarized in Table 2.

3.2. Methodology: a spatial and temporal downscaling approach

We downscale in two dimensions, addressing both spatial and
temporal scales. Following the hierarchical typology established by
Bierkens and colleagues (2000, pp. 111e144), these comprise
distinct problems.

For spatial downscaling, the modern geographic and climate
data described above are used to calculate relationships of
geographic variables to climate variables at data points known from
modern data through geographically weighted linear regression
using the spgwr package (Bivand and Yu, 2015) in R (R Core Team,
2016). All raster processing is also carried out in R, using the
raster package (Hijmans and van Etten, 2016) in R.

For temporal downscaling, the mean, trend, seasonal, and
interannual values frommodern data for the study area are used to
generatemonthly values with a modified version of the greenbrown
package (Forkel et al., 2013; Forkel and Wutzler, 2015) in R.

R code for the procedures detailed below, with reference to the
4 Available in the OT-Med data catalog at http://database.otmed.fr/
geonetworkotmed/srv/eng/search-54b9bf34-57ae-45ea-b455-9f90351e538f.

http://www.cnrm.meteo.fr/spip.php?article125
http://www.cnrm.meteo.fr/spip.php?article125
http://www.drias-climat.fr/
http://www.drias-climat.fr/
https://5data.uea.ac.uk/cru/data/hrg/cru_ts_3.23/cruts.1506241137.v3.23/
https://5data.uea.ac.uk/cru/data/hrg/cru_ts_3.23/cruts.1506241137.v3.23/
http://database.otmed.fr/geonetworkotmed/srv/eng/search-54b9bf34-57ae-45ea-b455-9f90351e538f
http://database.otmed.fr/geonetworkotmed/srv/eng/search-54b9bf34-57ae-45ea-b455-9f90351e538f


Fig. 2. Annual means (calculated from monthly values) of Holocene temperature (ADT) and precipitation (TMP) for the study area in centennial steps, from the HolCR dataset (Guiot
and Kaniewski, 2015) adjusted by using CNRM2014 data as a modern reference. Data on % cloudiness is also included, but not plotted here.

D. Contreras et al. / Journal of Archaeological Science 93 (2018) 54e6758
data sources described in Section 3.1 and Table 2, is available in the
supplementary online material.
5 The target resolution e here 300m e depends on analytic needs and practical
concerns about computing time and subsequent data management.
3.2.1. Spatial downscaling
The spatial downscaling that we develop here empirically re-

lates fine-scale auxiliary information to the coarse-grained data
available to derive a deterministic model. Geographically-weighted
regression of modern climate and geographic time-series data is
used to establish functions that relate auxiliary information
(geographic characteristics) to coarse-grained paleoclimate data
(temperature, precipitation, and cloudiness). As even for past time
periods geographic data are available at high resolution (we assume
little change in topography over the mid-late Holocene), they can
be used to derive high-resolution climate variables from the
existing low-resolution paleoclimate data.

The spatial downscaling procedure, with the input of spatially
homogenous data, produces a set of spatial relationships between
location and climate variables that can be used to calculate spatially
variable rasters of climate variables at temporal resolution that
matches the input data. In our case study, this makes possible high-
spatial-resolution climate data at centennial steps throughout the
Holocene (following the resolution of Guiot and Kaniewski's
dataset).

Using a DEM larger than the study area (~3100 km2 rather than
~1400 km2), in order to increase the sample of CNRM2014 points,
relationships of geographic variables to climate variables at each
point are calculated by geographically weighted linear regression.
After extracting values from the rasters of the geographic variables
at each point where there are CNRM2014 values for climate vari-
ables, regressions are calculated to test the value of various
geographic variables as predictors of climate variables, and then to
estimate the climatic variables using the values of the selected
geographic variables.

Geographic variables that are the strongest predictors for our
case study (determined by linear regression using the entire data-
set of 54 climate datapoints in the ~3100 km2 area) are elevation
and distance from the sea. Irradiance e calculated in GRASS GIS
(GRASS Development Team, 2016) with r.sun.daily e and latitude
were also tested; neither is a significant predictor, likely as the
CNRM2014 data are too spatially sparse to correlate with highly
locally-variant environmental characteristics such as irradiance,
aspect, topographic roughness, etc. Modern climate data of higher
spatial-resolution would allow incorporation of more predictive
variables, but even with only two predictor variables that the
predictive values are fairly high: mean R2 values (across all months)
are .93 for temperature, .80 for precipitation, and .77 for cloudiness
(see Table 1). These regressions, in other words, can predict climate
variables at an 8 km resolution with a reasonable degree of confi-
dence, and can thus be used to predict values of climate variables
on the basis of geographic variables at finer spatial resolutions e

i.e., limited in spatial resolution by the latter but not the former.
The selected geographic variables are then used in a

geographically-weighted regression to predict values of climate
variables for each cell in a 300m pixel raster (spatial resolution
could be increased to the limits [30m] of the original DEM with a
concomitant increase in computing time5). For months and/or
climate variables when linear regression indicates that distance
from the sea is not a significant predictor, elevation alone is used
(see Table 1).

For each cell the value of the target climate variable is predicted
based on the specified geographic variables, taking into account all
points for which both values are available within a specified search
radius. Geographically weighted regression (gwr) works to limit
the smoothing of spatial variation in the data by “moving a
weighted window over the data, estimating one set of coefficient
values at every chosen ‘fit’ point.” (Bivand, 2015); that is, relation-
ships between geographic and climate variables can vary locally
rather than being based necessarily on a regression across the
entire dataset. In the case study here the difference between gwr
and other methods is not large, but with denser data or a more
spatially variable dataset gwr would in principle be preferable, as it



Table 1
Geographic variables and their predictive utility in the spatial downscaling process.

Month Data Predictors used R2 Min
(predicted)

Min
(CNRM2014)

Max
(predicted)

Max
(CNRM2014)

Median
(predicted)

Median
(CNRM2014)

Areal mean (all
predicted values)

Areal mean
(CNRM2014 only)

Modern data source

Jan TAV (daily average
temperature (C))

elev þ coastdist 0.9144 0.2859 1.365 6.14 5.551 4.653 4.33 4.45 4.09 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Feb TAV elev þ coastdist 0.9075 0.9489 2.284 6.967 6.385 5.562 5.209 5.334 5.019 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Mar TAV elev þ coastdist 0.9453 2.343 3.864 9.704 9.069 8.224 8.085 7.923 7.639 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Apr TAV elev 0.9523 5.515 6.939 12.71 12.133 11.35 11.24 11.05 10.828 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

May TAV elev þ coastdist 0.9546 9.188 10.71 16.42 15.89 15.17 15.19 14.86 14.69 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Jun TAV elev 0.9557 12.89 14.37 20.16 19.59 18.77 18.64 18.46 18.24 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Jul TAV elev 0.9535 15.91 17.44 23.12 22.53 21.76 21.73 21.46 21.28 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Aug TAV elev 0.9408 16.55 17.93 23.29 22.65 22.04 22.03 21.75 21.61 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Sept TAV elev 0.9318 12.92 14.18 19.43 18.94 18.16 17.97 17.89 17.61 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Oct TAV elev þ coastdist 0.9244 8.296 9.415 14.76 14.129 13.25 12.917 13.01 12.63 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Nov TAV elev þ coastdist 0.9034 3.993 4.993 10.08 9.434 8.535 8.204 8.324 7.896 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Dec TAV elev þ coastdist 0.9129 1.292 2.183 6.877 6.363 5.471 5.103 5.276 4.906 CNRM2014 TAV (daily average
temperature (C)) (1950e2005)

Jan PAV (daily average
precipitation (mm))

elev 0.7942 1.885 1.969 3.622 2.731 2.19 2.155 2.262 2.201 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Feb PAV elev þ coastdist 0.7657 1.402 1.52 2.681 2.043 1.681 1.684 1.729 1.695 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Mar PAV elev þ coastdist 0.894 1.089 1.167 2.554 2.076 1.396 1.368 1.453 1.427 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Apr PAV elev þ coastdist 0.9011 1.596 1.647 2.8 2.427 1.93 1.935 1.967 1.961 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

May PAV elev þ coastdist 0.8651 1.842 1.977 3.286 2.844 2.322 2.394 2.352 2.406 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Jun PAV elev þ coastdist 0.8556 1.569 1.784 3.228 2.85 2.065 2.154 2.106 2.166 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Jul PAV elev þ coastdist 0.8987 0.7233 0.8048 1.787 1.4691 1.095 1.1742 1.115 1.1485 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Aug PAV elev þ coastdist 0.8528 0.486 0.5404 1.087 0.9475 0.6935 0.7317 0.7048 0.7209 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Sept PAV elev þ coastdist 0.5346 2.047 2.001 2.853 2.809 2.315 2.364 2.328 2.381 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Oct PAV elev 0.7679 2.653 2.545 3.898 3.531 2.874 2.923 2.93 2.936 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Nov PAV elev 0.8335 2.184 2.192 3.883 3.02 2.468 2.444 2.543 2.483 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Dec PAV elev þ coastdist 0.7036 1.796 1.882 3.062 2.281 2.036 2.042 2.086 2.046 CNRM2014 PAV (daily average
precipitation (mm)) (1950e2005)

Jan % cloudiness elev þ coastdist 0.6046 48.74 50.5 52.31 52 50.59 51.15 50.55 51.2 CRU % cloudiness (1951e2010 mean)
Feb % cloudiness elev þ coastdist 0.6954 48.99 50.4 51.82 51.6 50.38 50.9 50.43 50.95 CRU % cloudiness (1951e2010 mean)
Mar % cloudiness elev þ coastdist 0.8307 43.83 45.3 49.47 46.9 45.4 45.85 45.56 45.98 CRU % cloudiness (1951e2010 mean)
Apr % cloudiness elev þ coastdist 0.8514 41.35 43.1 48.9 45.1 43.16 43.65 43.43 43.88 CRU % cloudiness (1951e2010 mean)
May % cloudiness elev þ coastdist 0.8449 38.62 40.7 47.49 43 40.75 41.35 41.06 41.6 CRU % cloudiness (1951e2010 mean)
Jun % cloudiness elev þ coastdist 0.9345 31.68 33.9 41.96 36.5 34.05 34.7 34.43 34.95 CRU % cloudiness (1951e2010 mean)
Jul % cloudiness elev þ coastdist 0.9252 22.86 24.8 32.15 27.2 25.02 25.6 25.36 25.8 CRU % cloudiness (1951e2010 mean)
Aug % cloudiness elev þ coastdist 0.9021 25.78 27.7 34.68 30 27.84 28.4 28.17 28.62 CRU % cloudiness (1951e2010 mean)
Sept % cloudiness elev þ coastdist 0.8395 34.75 36 41.36 37.7 36.12 36.45 36.39 36.65 CRU % cloudiness (1951e2010 mean)
Oct % cloudiness elev þ coastdist 0.6909 42.7 44.3 47.26 45.8 44.39 44.8 44.38 44.92 CRU % cloudiness (1951e2010 mean)
Nov % cloudiness elev þ coastdist 0.6379 48.71 50.5 52.07 51.9 50.5 51.2 50.53 51.2 CRU % cloudiness (1951e2010 mean)
Dec % cloudiness elev þ coastdist 0.5038 49.87 51.6 53.58 53.3 51.8 52.35 51.74 52.4 CRU % cloudiness (1951e2010 mean)
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would mirror, rather than smoothing, spatial heterogeneity in the
input data.

The resulting raster is cropped to the study area. Following this
method a raster is produced for each month for each climate var-
iable. The rasters produced by this process �300m resolution, for
each month e serve as reference datasets that can be adjusted
according to paleoclimate data, producing high spatial-resolution
estimates of paleoclimatic conditions.

3.2.2. Temporal downscaling
Temporal downscaling, as we employ it here, is a distinct pro-

cedure because it must operate without fine-scale auxiliary infor-
mation, using a mechanistic model and conditionally stochastic
methods. These comprise harmonic models with parameters
derived from modern interannual variability and the long-term
trends and seasonal amplitudes in the coarse-grained data. These
are used to generate time-series that constitutes single realizations
of the possible solutions within the parameters for the temporal
scale. The result e the generation of monthly values that are
consistent with the coarse-grained averages though individual
values are not directly empirically derived e requires consideration
of long-term trends, seasonal amplitudes, and interannual
variability.

Centennial means of climate variables for the study area
throughout the Holocene are calculated from HolCR and modern
reference values for the area calculated from CNRM2014 and CRU
data. Centennial trends are provided by linear interpolation from
the HolCR data; any three values from HolCR thus produce a
continuous 200-year series, while the varying annual means of the
HolCR data capture the longer-term Holocene trends. Seasonal
amplitudes are calculated from HolCR by linearly interpolating the
monthly values from each centennial step and fitting two-term
harmonics to each decade. Temperature, precipitation, and cloud-
iness are calculated independently from one another. Although in
principle these variables are likely to be coupled, modeling those
complex and dynamic relationships (the region is influenced by
both Atlantic and Mediterranean climate systems) would itself be a
considerable task (Fowler et al., 2007, p. 1563). We have not
attempted to model these couplings, but the covariance of these
variables with the predictors should limit their divergence except
in rare (stochastic) cases.

These trend and seasonal components are combined with
interannual variability calculated from CNRM2014 and CRU data.
For CNRM2014 standard deviation and range of ADT and TMP are
calculated from TAV and PAV for the area from 1951e2005, and for
CRU standard deviation and range of cloudiness values are calcu-
lated from the data for 1961e1990 by subtracting the CRU ‘cld’
values from 100. Interannual variability throughout the Holocene
apparently did not always match modern magnitudes in the region
(cf. Büntgen et al., 2011; Luterbacher et al., 2006), but in the absence
of specific proxy data of resolution sufficient to reconstruct inter-
annual variability we use modern data.

The mean, trend, seasonal, and interannual values for the study
area are used to generate monthly values for a selected time period.
The SimTs() function from the greenbrown package generates
monthly values for each climate variable for each year of the
specified period by building a time series frommultiple time-series
components: the mean of the time series, the trend slope, the
standard deviation of annual means, the range of annual means, the
seasonal amplitude, and randomly-generated short-term intra-
annual variation. The sum of these components describes a time
series for the selected variable (cf. Forkel et al., 2013, pp.
2118e2122). In order to fit the seasonal patterns in climate vari-
ables in the study area, we replace the cosine harmonic that
SimTs() uses to generate a seasonal distribution with harmonics
fitted to the HolCR values for the period as described above.
The modified SimTs() results are monthly values over a 200-

year segment, from which the target segment can be extracted if
it is shorter. The monthly values for ADT, TMP, and % cloudiness for
that segment are used to calculate monthly anomalies from the
HolCR reference values, and new rasters are calculated from the
reference rasters by adjusting temperature (average daily temper-
ature in �C), precipitation (total monthly precipitation in mm), and
cloudiness (% cloudcover) using the monthly anomalies for each
year of the selected time window.

As a period of interest is defined and the data for those dates
extracted from the HolCR dataset, anomalies from the modern data
are calculated, and the reference rasters can be used to derive
rasters at 300m-resolution for any year of the Holocene for the
three climate variables, all bymonth. To capture the trend in annual
means and seasonal amplitude across a target window 200 years of
data (three datapoints) are the minimum towork with. Using these
in the temporal downscaling process, a time-series of spatially-
downscaled rasters can be generated, from which a smaller
segment can subsequently be extracted.

4. Results: from centennial means to a year in Provence

Mediterranean climate variation during the Holocene is modest
compared to that of the Pleistocene, but nonetheless paleoclimate
data underpins a large number of studies positing relationships
between climate changes and cultural developments (see partial
reviews in Finn�e et al., 2011; Roberts et al., 2004; Robinson et al.,
2006). This is particularly true in the eastern Mediterranean (e.g.,
Kaniewski et al., 2015; Weninger et al., 2009; Wiener, 2014),
reflecting greater abundance of archaeological and paleoclimatic
research, but Holocene climate-culture links have also been sug-
gested in the western Mediterranean (e.g., Berger and Guilaine,
2009; Carozza et al., 2015; Weinelt et al., 2015). As discussed
above, the elucidation of these links is limited by chronological
resolution and the often incommensurate scales of analysis and
explanation pursued by paleoclimatologists and archaeologists.

In the Mediterranean, the diversity of microenvironments
characteristic of such a topographically complex region historically
has significantly complicated generalization from paleoclimate
data, and further complicates the exploration of the human con-
sequences of climate change. In Provence, geographic variability is
one of the principle drivers of the region's significant environ-
mental diversity (cf. Blondel et al., 2010, p. 13, who single out,
“slope, exposition, distance from the sea, steepness, and parent
rock type”). Although of course other variables (e.g., water avail-
ability, soil depth, etc.) are also influential, environmental contrasts
apparent over short distances reflect in large part the interaction of
topographic variability and climatic variability. Climate changes
may thus affect the spatial distribution of environmental variability
as well as the environment in aggregate; both can impact the hu-
man inhabitants of a landscape. Interannual variability, which can
be obscured by long-term means, may also be particularly signifi-
cant for inhabitants.

Employing a spatial and temporal downscaling approach to
explore the human consequences of past climate changes at large
spatial scale and high temporal resolution to a Mediterranean case
provides a means of addressing the challenges of a) reconciling
scales and resolutions, and b) exploring the implications of
geographic and interannual variability. The case study area in
Provence explores this across an approximately 1400 km2 study
area (Fig. 1) that spans significant topographic variability: eleva-
tions range between 50 and 1200 masl and the area includes both
the floodplain of the Durance River and the steep limestone ridge of
the Luberon. For the period for which instrumental data are



Table 2
Data sources.

Data
source

Summary description Variables
used

Spatial
resolution

Temporal resolution
and span

Reference and data url

CNRM2014 Simulated dataset based on the limited-area aladin-
Climate model (Aire Limited Adaptation Dynamic
development InterNational) and corrected by a quantile-
quantile method to SAFRAN (Vidal et al., 2010).

TAV, PAV 8 km Monthly values,
1950e2005

(Spiridonov et al., 2005); http://www.cnrm.meteo.fr/
spip.php?article125; DRIAS Portal at http://www.
drias-climat.fr/

CRU Global gridded climate dataset interpolated from 20th-21st

century meteorological station data.
clda 100 Monthly values,

1951e2010
(Harris et al., 2014; New et al., 2002); https://crudata.
uea.ac.uk/cru/data/hrg/tmc/

HolCR Holocene climate reconstruction based on pollen data and
an inverse vegetation model (BIOME4)

ADT, TMP,
%
cloudiness

2�

latitude x
4�

longitude

Monthly estimates
in centennial steps;
10000 BP - present

(Guiot and Kaniewski, 2015); OT-Med data catalog at
http://database.otmed.fr/geonetworkotmed/srv/eng/
search-54b9bf34-57ae-45ea-b455-9f90351e538f

SRTM30 digital elevation model elevationb 30m 2000 (NASA JPL, 2013); http://dds.cr.usgs.gov/srtm/

a In fact the CRU dataset provides % sunniness, which must be subtracted from 100 to provide % cloudiness.
b Although they were not ultimately used, we also tested elevation derivatives, e.g., slope, aspect, and irradiance.
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available (or modeled data based directly on instrumental data;
namely the CNRM2014 and CRU datasets), average daily tempera-
tures (TAV) vary in space by 4e5 �C in each month of the year, and
total monthly precipitation (TMP) by 12e32mm (see Fig. 3). Long-
term temporal variation, by comparison, assessed from the HolCR
dataset across the entire Holocene for the cell including the study
area, is generally more modest: AMT has varied by approximately
1e2.5 �C, depending on the month, and TMP has ranged by
10e20mm, depending on the month (see Fig. 4).

The combination of spatial and interannual variability produces
marked contrasts across the study area, belying the homogeneity
inherent in a coarse-grained reconstruction. Downscaling of AMT
in the study area at 2400 BP e the coolest period of the Holocene e
Fig. 3. Mean values (ADT and TMP) of each of the 24 CNRM2014 datapoints within the stu
variability in temperature and precipitation over a 56-year span. Labels denote the range o
for instance, demonstrates both the strong seasonality recorded in
the input data and the spatial variability in temperature produced
by elevation gradients that is absent in the input data but produced
by the downscaling process (Fig. 5). AMT values from the HolCR
dataset for 2400 BP range from 3.1 to 21.6 �C, while the downscaled
rasters display lower minima and higher maxima, reflecting
spatially variable values for each month (Table 3).

The addition of temporal downscalingmakes it possible tomove
from spatially-variable but static climate reconstructions to time-
series of spatially-variable reconstructions that better reflect the
variable and dynamic environments that inhabitants of the region
would have experienced. The addition of temporal variability
following centennial trends is illustrated in Fig. 6, while Fig. 7
dy area for all points within the study area for the period 1950e2005; i.e., the spatial
f variability for each month.

http://www.cnrm.meteo.fr/spip.php?article125
http://www.cnrm.meteo.fr/spip.php?article125
http://www.drias-climat.fr/
http://www.drias-climat.fr/
https://crudata.uea.ac.uk/cru/data/hrg/tmc/
https://crudata.uea.ac.uk/cru/data/hrg/tmc/
http://database.otmed.fr/geonetworkotmed/srv/eng/search-54b9bf34-57ae-45ea-b455-9f90351e538f
http://database.otmed.fr/geonetworkotmed/srv/eng/search-54b9bf34-57ae-45ea-b455-9f90351e538f
http://dds.cr.usgs.gov/srtm/


Fig. 4. Diachronic variability in ADT and TMP in the HolCR dataset for the cell including the study area, throughout the Holocene (data centered but not scaled).

D. Contreras et al. / Journal of Archaeological Science 93 (2018) 54e6762
demonstrates the results of temporal downscaling to generate
variability following centennial trends and modern interannual
variability, in this case precipitation in the month of March for the
period 4004 BP - 3096 BP, the driest period of the Holocene. Where
HolCR provided a single TMP value of 36.2mm and spatial down-
scaling produced a spatial range of 25.2e69.2mm (Fig. 7a), tem-
poral downscaling to generate interannual variability produced a
sequence of rasters whose minima range from 0e33.9mm and
whose maxima range from 27.5e77.8mm (Fig. 7b; this is a single
realization illustrating one possible solution).

These downscaled data open new analytical possibilities,
particularly regarding human-environment interactions and po-
tential impacts of climate change. Variability of the magnitude and
at the spatial and temporal scales visible in Fig. 7b can be vital to
archaeological interpretation, and downscaling enables consider-
ation, for instance, of whether site distributions are random with
respect to climate variables. Various other factors e notably chro-
nological resolution, landscape taphonomy, and recovery bias e

make assessment of settlement pattern data in the study area an
analytical challenge, but in spite of such difficulties downscaled
paleoclimate data have the potential to generate hypotheses that
would have otherwise remained inaccessible.

The Late Iron Age expansion of settlement in the study area
illustrated in Fig. 8, for example, might represent a simple infilling
of the landscape as population increased (push factors: local pop-
ulation increase, political and/or economic imperatives, etc.), and/
or it might represent the results of the opening up of previously
unused areas (pull factors: changes in agricultural practices or
technologies [irrigation, iron plowshares, etc.)], shifts in crop
preference, willingness to accept less productive land, changes in
climate, etc.). Downscaled climate data make it possible to evaluate
the hypothesis that changing climate enabled agricultural expan-
sion into areas previous insufficiently productive to be exploited:
comparison of the quantities and variability of precipitation in the
areas settled (Fig. 8) suggest little change from the Early to Late Iron
Age, and the summarized values around each settlement do not
show any strong contrast from one period to the next (see boxplots
at left in Fig. 8; the climate-driven contrast in standard deviations is
clearly statistically significant, but the magnitude of difference [a
decline of 2% in TMP] is probably too low to suggest any notable
shift in agricultural potential).

Higher-resolution cultural chronology, as well as specific
consideration of the hydrologic needs of particular crops, might
enable further evaluation of climate impacts in the 3rd millennium
BP. For that or any other period, resolution of the cultural chro-
nology is a limiting factor in interpreting any effects of climate
change: although the downscaled data enable tracking changing
spatial patterns of climate variability, the settlement data do not
always allow tracking of changes in settlement patterns at com-
parable temporal resolution, and aggregation of the climate data
over archaeological periods (each of approximately four centuries
here) may efface important variability. However, this evidence of
broad consistency in climatic conditions and niches exploited
suggests that climate was not a strong driver of settlement pattern
in the study area during this period (and moreover the apparent
sudden increase in site density in the Late Iron Age is in fact an



Fig. 5. Spatially downscaled monthly rasters for 2400 BP, the coolest period of the Holocene, with 100m contours derived from the SRTM30 DEM.

Table 3
Monthly temperatures (�C) from HolCR and downscaling results for the study area at 2400 BP.

January February March April May June July August September October November December

HolCR value 3.08 4.04 6.91 10.57 14.67 18.26 21.29 21.55 17.33 12.12 7.21 4.03
spatial minimum �1.08 �0.35 1.33 5.04 9.00 12.69 15.75 16.35 12.36 7.40 2.88 0.05
spatial maximum 4.77 5.67 8.69 12.24 16.24 19.95 22.95 23.08 18.87 13.86 8.97 5.63
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artifact of time-averaging and was rather the result of gradual
growth [cf. Isoardi, 2010]). Such (preliminary) negative evidence
only becomes possible with downscaled data; with only coarse-
grained data like that in Fig. 7a, questions like these, vital to
considering potential impacts of past climate changes, cannot even
be asked.

5. Conclusions

The simulated data produced by spatial and temporal down-
scaling capture both spatial variability and interannual variation in
climatic factors, parameters fundamental to assessing the human
consequences of climate changes. Examining such consequences at
high resolution is necessary to analysis of the significance of cli-
matic factors for such fundamental human activities as agriculture,
and thus vital to the articulation of mechanisms linking climate and
cultural change. There are drawbacks: downscaling adds a further
layer of analysis, and can create a seductive precisionwhen in fact it
produces non-unique solutions that should be understand as
reasonable but not necessarily accurate. However, not downscaling
is also dangerous: it represents an implicit downscaling, in which
coarse-grained data are presumed to indicate homogeneity within
each granule, and understood as relevant at scales finer than those
measured but without explicit mechanisms to relate regional to
local or time-averaged to temporally-variable.

The methodology that we have presented here is straightfor-
ward to apply for any portion of the Holocene anywhere in the
Mediterranean Basin using the same datasets, and the approach is
adaptable to other regions and input data. The value of such data
manipulation is analogous to what Lake (2015, p. 9) describes with
reference to archaeological simulation modeling: it enables the
virtual disaggregation of spatially and temporally coarse-grained
data, and thus constitutes an important tool in shifting to a hu-
man scale of analysis. It can provide the raw material for further
modeling and analysis focused on socioecological systems (advo-
cated as a unique and significant contribution of archaeology to
studies of sustainability and resilience; cf. Barton et al., 2012;
Kohler and van der Leeuw, 2007; Van der Leeuw et al., 2011). Such
modeling often requires higher-resolution and larger-scale data
than that generally available from paleoclimate archives; indeed



Fig. 6. Temporally downscaled annual means of temperature (ADT) and precipitation (TMP) for the period 4200-4000 BP in the study area, with HolCR datapoints (solid circles) for
reference. Inter-annual variability is based on the range and standard deviation of modern (CNRM2014) data, and the means and trends of the time series provided by the HolCR
values (see Section 3.2.2).

Fig. 7. a) Example of HolCR data for October 4000 BP, with CNRM2014 datapoints (black circles) and 100m elevation contours derived from the SRTM30 DEM. The source data
provides monthly values like this in centennial steps. b) After spatial downscaling, values for March 4000 BP (center panel) are spatially variable, and can be temporally downscaled
for intervening years following centennial trends and modern interannual variability (e.g., illustrated in the nine panels here, the month of March for 4004 BP - 3096 BP).
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one of the benefits of such models is that they mandate explicit
consideration of data requirements. The problem is not uniquely
archaeological: developing agent-based models, agroecosystem
models, or erosion models at scales directly relatable to human
experience and decision-making is as much a challenge for
socioecological science of the present as of the past. Downscaling
tools are thus as needed in present-day modeling as in archaeo-
logical simulation, and are vital for considering, for instance, the
specific implications at local scales e i.e., the human impacts e of
the 1.5e2 �C of global warming targeted by the COP21 agreement.



Fig. 8. Early (green diamonds) and newly established Late (red triangles) Iron Age occupation and agricultural sites, plotted on 300m raster of mean annual TMP and standard
deviation in TMP for the Early Iron Age and Late Iron Age (approximately 2700e2400 and 2400-2002 BP, respectively). Boxplots indicate precipitation niches occupied by occu-
pation and agricultural sites in the Early and Late Iron Age: each datapoint represents the mean TMP over the period within a 200m buffer around a site. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Methodologies like that presented here thus add needed compo-
nents to the analytical toolkit for past human-environment dy-
namics, and potentially contribute to exploration of present and
future human-environment dynamics as well.
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